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Retrieval behavior and thermodynamic properties of symmetrically diluted
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The retrieval behavior and thermodynamic properties of symmetrically dilQt&sing neural networks are
derived and studied in replica-symmetric mean-field theory generalizing earlier works on either the fully
connected or the symmetrical extremely diluted network. Capacity-gain parameter phase diagrams are obtained
for the Q=3, Q=4, andQ= state networks with uniformly distributed patterns of low activity in order to
search for the effects of a gradual dilution of the synapses. It is shown that enlarged regions of continuous
changeover into a region of optimal performance are obtained for finite stochastic noise and small but finite
connectivity. The de Almeida-Thouless lines of stability are obtained for arbitrary connectivity, and the result-
ing phase diagrams are used to draw conclusions on the behavior of symmetrically diluted networks with other
pattern distributions of either high or low activity.
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I. INTRODUCTION creased in symmetrically diluted networks.
Networks of Q-Ising neurons in various architectures

The storage and retrieval properties, as well as the dynankave been studied over some time, in particular, fully con-
ics, of large attractor neural networks have been studied overected, layered feed forward and extremely dilute networks
some time and numerous results are now available. The pregdth asymmetric connectivity8—15]. They are of interest
ence of an exponentially large number of unwanted spinfor possible hardware applications and an eventual biological
glass-like states in fully connected networks may limit se-modeling, because of the increased flexibility of the states of
verely the storage capacity, the information content, and théhe network to account for complex neural behavior. It has
performance, in particular, the retrieval quality of previouslybeen suggested that an attractor neural network model with
stored patterns that act as attractors in the dynamics of thmultistate neurons may describe the short-term memoriza-
network. Also, the size of the corresponding basins of attraction performance of th€ A; region of the hyppocampus in
tion may be considerably reduced. Other tasks, as the categbeth the brain of primates and in the human brain, and re-
rization or generalization ability of a network, are also im- sults of numerical simulations for the selective performance
paired due to the presence of such states and, except foroha network with asymmetric synapses and small connectiv-
low storage ratio that is, for a reduced level of stochastidty (c=0.2) are now availabld16]. However, complete
noise, a performing network is very likely to be trapped in phase diagrams that give a global picture of the performance
one of those states, preventing the occurence of finite oveonf a network and a physical explanation of why biological
laps with the patterns of interest. networks seem to prefer a low connectivity are still missing.

The study of the equilibrium behavior of the Hopfield Attractor network models with a Hebbian type of learning
model with binary neurons and extremely losymmetric rule may also serve to account for long-term memory in the
connectivity ¢ [1], suggested that except for zero storagebrain[17].
ratio « or in the absence of synaptic noiggthe properties of Both the parallel dynamics and the equilibrium properties
the model may be quite different from those of the extremelyof extremely diluted networks with symmetric connectivity
diluted network with asymmetric synapses, which has aetween multistat€®-Ising neurons have been studied in re-
trivial dynamics[2]. In particular, the equations for the order cent works[18,19. The symmetry of the synaptic connec-
parameters are equivalent to those of the Sherrington artibns allows for a detailed balance assumption in the dynam-
Kirkpatrick (SK) spin-glasgSG) model[3]. ics and enables one to perform full analytic calculations of

It has been shown, nevertheless, that strong symmetrithe equilibrium properties of a network. This is particularly
dilution of synapses in the Hopfield moddl,5] may consid-  convenient in the search for phase diagrams. So far, there are
erably reduce the stability of spin-glass states. Indeed, in theo results, to our knowledge, concerning the memorization
limit c—0, the retrieval states are globally stable in theirperformance of symmetrically dilute@-Ising networks with
whole domain of existence of the, T) phase diagram, thus small but finite connectivity and low-activity patterns, which
leaving only locally stable SG stat¢6], in contrast to the characterize a biological network.
situation in the fully connected Hopfield modgl]. It has The purpose of the present paper is to consider the re-
also been shown that already a gradual dilution reduces thigieval performance of an attractor neural network modeled
stability of the SG states in the region where they compet®n some of the features of a biological network. We study
with the retrieval states and that the storage capacity of thbere the equilibrium behavior of a symmetrically diluted
network is increasef6]. These are important results on the Hopfield model with finite connectivity and low-activity
performance of a network that also suggest that the basins ohits in Q-Ising states. Multistate networks are known to
attraction of the memoryretrieva) states should be in- have complex properties and our main aim here is to find out
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how that behavior is changed by a finite dilution of the syn- We consider next the dynamics of the partially connected
apses and the low activity of the embedded patterns. Wenodel. For a given configuratiofS} of the network, the
consider explicity a Q=3, Q=4, and a continuous local field acting on neuronis given by
Q= o-state network.

The outline of the paper is the following. In Sec. Il, we _ d
present the model and show how the Hamiltonian becomes h'({S‘})_Ej: IS, ©
the sum of an effective Hopfield-model Hamiltonian and that
of a Sherrington-Kirkpatrick-like spin-glass model. The Wherle’j is the synaptic coupling between neurarsndj.
replica-symmetric mean-field theory for the model and theWe assume that the synapses of the network are symmetri-
relevant order parameters are derived in Sec. Il and explicitally diluted being left with dinite connectivityc (the frac-
expressions are presented in the Appendix. The results fdion of connected neuropghat, eventually, may become
the phase diagrams and the retrieval performance are digsanishingly small. Specifically, the synapses are of the
cussed in Sec. 1V, and our conclusions with a summary of thélebbian-like form,

results may be found in Sec. V. )

d _i Iy
Il. THE MODEL Ji acN,Zl & ©
Attractor neural networks are dynamical systems. Congg, our nonsparse network, in whial{¢*))=0. Here,{c;
. e ; ' ]
sider a network oN neuronsj=1,...N. At the time step, =cji;i,j=1,...N} is a set of independent identically distrib-
the state_ of neuronis descrlbgd by the variab&(t), which | 1aq random variables, such thaf=1 with probability c
may be in any one of th@-Ising states and zero with probability + ¢, while ¢;; =0. Thus, the sym-
metric dilution introduces an additional randomness both
2(k—1) (1) into the dynamics of the network, which becomes non-trivial
Q-1 even in the extremely diluted case due to feedback loops
[18], as well as in the thermodynamics. We are interested, in
in the intervall —1,1], for k=1,...Q. A macroscopic set @  the following, in the case of a large connected network, in
independent and identically distributed random patterngvhich cN is very large.
{&F;n=1,...p;i=1,..N}, with p=acN, is embedded in The state of each neuron is updated asynchronously ac-
the network by means of a Hebbian-like learning rule, specicording to a Glaubefsingle spin-flip dynamicg5] in which
fied below. Hereg is the storage ratio per connected site andthe transition probabilities are given by
cis the connectivity of the network. Every bit of each pattern

o= —

may be in any one o equally spaced states, also in the P[S|(t+AD) =0 [{Si(1)}]
interval [—1,1], which are assumed to have zero mean and _ _
variance . exp[ﬁej[ak|h]({3(t)})]} @)

- IR expBeloh({S(HDT}

whereB=1/T is the inverse synaptic noigeemperaturgand
}pe single-site energygj(s| h), is given by

((éH?)=a<1. )

This is a measure of the size of the patterns, describing the
mean activity, which accounts for bits that either are turned
off or depressed.

The first task to be performed by the network is to attaingere, ¢ is a tuning parameter favoring local states of small
a finite storage ratiar and this ratio may be optimized for gynamical activity. In the absence of stochastic noise, the

patterns of a given size by means of an appropriate tuning Qeterministic evolution of the system follows the updating
the states of the network, discussed below. The second aim j§|e

to reach a sufficiently small Hamming distance

€/(slh)=—hs+ 6s%. )

Sj(t+At)=0qy  hj(D)], 9
dH(fﬂ’U):NﬂEi (¢-s)? ©) where® 4,(x) is the nondecreasing step function, for finite
Q!
between the network sta{&;} =(S;,...Sy) and a given pat- 0
tern {£/}, as a measure of the retrieval performance of the Ogyn(X)= > T {O[O(0s1+ o) —X]
network. This depends on both the overlap Y k=1
—0O[0(oy+ o—1) —X]} (10

m=(aN) 12 €S @

with gg=—2 and og+1=+%, in which ©(x)=1, if x
=0, and zero otherwise. Clearly,is a threshold parameter
and the dynamical activity of the networkap  since the state of neurgrassumes the valug, given by Eq.
=(aN)*1EiS$. (1) if the local field h; is bound byoy+ oy_1<h;/0< 0oy
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+0y+1. The width of the intermediate states with constapt  nite a=p/cN, the weakJ;;=0(\a/cN) may be used to
for 1<k<Q (that is, excluding the limiting values af,  expand the logarithm to next-to-leading orderJin. Using
==*1), is given by 4/(Q—1). Thus, the width of the zero the law of large numbers to deal witkiipz, we obtain
state for the three-state network studied belowds|8 the

limit Q—oe, the input-output function becomes the piece- n _ effqaqe
wise linear function (Gp{Sh)e=| ex ’BUE,J-) i S'S 5’ (19

i X in which the effective coupling is given b
@dyn(x):sgr(x)m|n(2_0'1 , (11) In wnic € efreclve Llp“']gIJ IS given by

1 P
where mink,y) means the minimum betweenandy. The Jﬁﬁ:a_N Z g{‘g;’# Sij - (16)
slope of the linear part, 1/2 is the gain parameter of the w=1

continuous network. _ The first term is the Hebbian synapsis of the fully connected
Both the locally stable states of the dynamics, as well 3% atwork with multistate patterns of activity and 6; is a

h d . X f the diluted K which f I%aussian random variable with zero mean and a pattern-
thermodynamic properties of the diluted network, whic O'independent variancd?/N=a(1—c)/N; the brackets on

low from the above dynamics, are described by the Hamil—the right-hand side of Eq(15) denote an average over this

tonian random variable. This generalizes an earlier result by Som-
polinsky [21] showing that dilution appears as a synaptic

H=-2> JiSS+6> S, (12 noise. - |
(L5 ! Thus, the symmetric dilution introduces an effective

. . . . . Hamiltonian, in the largeN limit
where the first sum is over all distinct pairs of neurdis. onian, ©large '

Eventually, a field-dependent ten‘quigilSi may be added to " i 5
generate the overlap with a specific pattern, and this will be Hef= -2 J5ss + 92 S (17
implicitly assumed below. (D

~We adapt next the procedure of Viana and BFag] for  \yhere the first term is a sum of a Hopfield-model Hamil-
diluted spin glasses in order to deal with the random dilutionygnian and a kind of SK-model term. This is used in the

In distinction to their case, which is that of a strongly inter- fo|lowing section to derive the mean-field theory for the
acting spin glass, we have here a diluted network with rany,ggel.
domness in the patterns and weak interactions between units.

The latter allows for an exact truncation to the relevant order

. . . . g I1l. MEAN-FIELD THEORY
in 1/cN that is sufficient for the mean-field calculation of the

following section. We consider now the mean-field theory for finikeand
Consider the disorder-dependent part of the Hamiltoniarior any connectivityc=O(1). Theaveraged free energy per
in the exponentiated form connected site is given by
1
Gﬁ({si}):eXp{,BZ J?jsisj]- (13 f(B)=—lim —{(INZex(B))5 ey,  (18)
(i,]) CN— BCN "

Given a fixed sef&/'} of patterns embedded in the network, with the averages first over the Gaussian noise in the synap-
we first have to build up a finite connectivity between units.tic interactions and then over the pattern distribution. The
That is to say, we have to find a network such that the meaeffective partition function is then given by

of ¢;; is preciselyc and, to this end, we have to perform first

an average over these random variables. The average over

_ _ eff
the random patterns, which is necessary to evaluate the per- Zeﬁ(ﬁ)_% exp(—AH™), (19
formance of the network, comes at a later stage. The con-
figurational average over the sft;;} of the n times repli-  and this is used in the replica method to perform the random
cated functionG4({S;}) becomes averages by means of
(GE({Sh)e

1
((In Zeff(ﬁ)){&ij}>{§”’}: ”moﬁ(<<Zgﬁ(:8)>{5ij}>{§“}_ 1.
w3 e}

(14)  The essential point is then the calculation of the averaged
replicated partition function. Assuming, as usual, that a finite
whereJ;; denotes the value ofidj for ¢i;;=1. We are inter- number of patterng; is condensed, with finite overlaps with
ested in dense networks, that s O(1) and largecN, let-  the state of the network, we perform the random noise aver-
ting eventuallyc— 0 after the thermodynamic limit. For fi- age and sum over the uncondensed patterns to obtain

=expl 2, In

(.j)

1+c
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AZBZ
N

oy

Xexp{ - @E (m2)2+np,8F+

<<Zgﬁ(ﬂ)>{5ij}>{§ﬂ}22 eX| 2 (2 SHSB) }
(s} ap |\

X < exp{ ,82 [m2&'St

- 0(3.“)2]] > ) (21)

[&4)

where the sum ovefS'} counts the configurations for all
possible replicase. The dilution appears only in the first
factor and

>

exp(pnpF)= 1 <exp{%§j > 3“81“5{‘§f‘]>
“ {&}
@2

is the average over the uncondensed patterns.

For both the calculation of the functidh and the linear-
ization of the quadratic form in the dilution term, we intro-
duce the replica matrix elements

1
Ap=Qup= 2 S I a#p (29
of the SG order parameter and
G0=Qua (24)

which is the dynamical activitgy of the network. The latter
is one only in the case of binary units and, in genegal;
<TG,=<1. In the thermodynamic limiN—c, we obtain[22]

nBG=— :trin(1—Bq)— 3 Btraq, (25)

whereq is the matrix of elementg,z andd, . Introducing
as usual the overlap parametey; associated to the correla-

PHYSICAL REVIEW B4 061902

a c
x> ax
1
_E< f Dzln% exp(/aHeﬁ)> , (30)

{7

where Dz=dzexp(—Z/2)/\2 is a Gaussian measure, and
x=B(ap—q), given byBZ((S)) —(S)?)/N, is the suscep-
tibility of the network. The new site-independent effective
Hamiltonian™H.g, is given by

> m, e+ \/arcz—~0S>,

(31)

14

Heff: S(

in terms of which the thermal averages are defined as

25 S" exp BHer)
g eXp(BHer)

Note, incidentally, that the explicit term ia(1—c) in the
free energy comes from the variance of the Gaussian random
noise due to the dilution.

The order parameters that describe the performance of the
network are given by the saddle-point equations

(S'(2))= (32)

m —E<§Vf Dz(S(z)>> (33
" e
q=<JDZ<S(Z)>2> ; (34)
{¢"
and the susceptibility becomes
= i< f Dzz<8<z>>> (39
Y Vare )

in which (S(z)), for a given Gaussian noigds given by Eq.
(32). Noting that the effective Hamiltoniak(.s is formally
the same as either that of the fully connected or the ex-
tremely diluted network, with a different stochastic Gaussian

noise and different effective threshofd for each connectiv-

tion between the overlaps of the patterns that do not congy ¢ our equations fom,,q, andy will be formally similar

dense, we restrict ourselves to replica symmetry, in which

m,=m., (26)
q=0ag> (27)
ap=T,, (28)
r=rys. (29

The free energy per connected site, in the thermodynamic

N—-cec limit, then follows as

to the equations for both these networks, and explicit expres-
sions are given in the Appendix.

The parameter follows from the algebraic saddle-point
equation

{ 1 1-c 36
r_ 1
Ta1—7"
and
Tl X SX
=10 5 1+ =y’ (37)
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is the effective width of the intermediate states. Eventually, A. The three-state network
depending on the state of the network specn‘led~by the dy- |4 the Q=3 case, the patterns take the value$ with

namical activityap and the SG order-parametay ¢ may  probability a/2 and 0 with probability (+a), in which a

become negative, favoring an order with large absolute val=2/3 in the case of uniformly distributed patterns. The ef-
ues forS Whenever_th|s is the case, the network acts, at ZerQ. tive transfer functiorSB(h,E) =(S(2)) that follows from
temperature, as a binary network with zero threshold, as wil

he average in Eq32) is given b
be seen below. The combinatidhm, &+ \arcz, in which g 432is 9 Y

the second term is the Gaussian noise due to the macroscopic 5 sinh(8h)
number of uncondensed patterns, may be viewed as an effec- Sg(h,0)= — , (39
tive random field that will influence the network perfor- 3 exp(86)+ cosh Bh)

mance through a competition with the effective threshild
Having performed the thermodynamic limit, one may nowwhich becomes
allow anyvalue for the connectivity within &c=<1, includ-
ing the limit c—0. It may easily be seen that one recovers S.(hs,0)= lim Se(hs 0)=sgrhy®(|hd—9), (40
for f(B) both the mean-field free energy for the fully con- B
nected network wher=1 [15] and that for the extremely

dilute case, wherw—0 [19]. In this limit, rc=q and0=0  in the zero-temperature limit. Clearly, wheh<0, the net-
—ayx/2, whereas forc=1, we haver=q/(1—x)? and &  work acts as a binary network @t=0.

=60—ax/2(1—x), also in agreement with the known re- In the cases of the fully connectéd5] or the extreme
sults. These relations are valid for any temperature parameteymmetrically diluted network19], explicit closed form ex-

1/8. Thus, we have the complete form for the replica-pressions that signal the appearance of either a retrieval or a
symmetric free energy for arbitrary connectivity. spin-glass phase, at zero temperature, have been obtained in

Note, incidentally, thatc=q not only in the above limit the 9—0 limit when @<0. These are particularly useful to
but also fora=0, in the— < limit, for any connectivityc,  ynderstand the low-threshold behavior of the phase dia-
(that is, for any architectuyeand for allQ, and this is based grams. In the present case of a network with finite and less
on y—0 in that limit. Otherwise, the susceptibility remains than complete connectivity, closed form expressions for the
finite, even at zero temperature, singe-ap, when 8 onset of the ordered phases cannot be obtained and one has
—o, while at finite temperature we have, in geneml, to resort fully to numerical solutions.
<ap. Nevertheless, the zero-temperature behavior of the ther-

The limit of stability of the replica-symmetric solution modynamic transition may be easily analyzed as in previous
comes from the study of quadratic fluctuations of the freeworks, to demonstrate that the retrieval state corresponds to
energy in the vicinity of the symmetric saddle point. Follow- the most stable phase, despite the presence of a spin-glass
ing the de Almeida and Thoule$&T) analysis[23], we ob-  and a paramagnetic pha&ehich is a frozen zero-spin state
tain Indeed, the physical free enerdy: — f(3) at zero tempera-

ture becomes

arc?
q

< J DZ[<SZ(Z)>_<S(X)>2]2>{§V}$1. (38) f=— gmz— %ch +orc. (41

. . : ) . Since the susceptibility vanishes in tae—0 limit when T
as the stability condition for the replica-symmetric solution. _ g oy any of the three phases, and at the same time

This gquation is to be solved together with the saddle—point_>q, the retrieval free energy is the minimum whenever
equations for the order parameters.

< 1/2. Note that the susceptibility of the paramagnetic phase,
The formal results obtained so far are valid for any finite pribility P g P

number of condensed patterns with finite overlaps with the
state of the network. We are mainly interested in this paper in _ 2p (42)
the retrieval performance with a single condensed pattern, X T '
L . ) ) . exp(Bo)+2
and this will be discussed in the following section.

also vanishes in the zero-temperature limit for finitand

IV. RETRIEVAL AND THERMODYNAMIC PROPERTIES ;:(;)rn;‘/ﬁ]rglilng tod, ensuring a minimum retrieval free energy
.
For the retrieval of a single condensed pattern, &aywe Although much emphasis is often made on the thermody-

havem,=mé,,;, and omit the index one from now on. We namic transition to globally stable retrieval states, which
consider separately the results Qr=3, Q=4, andQ=x have the lowest free energy, it is worth keeping in mind that
that follow by solving the saddle-point equations and restricheural networks are dynamical systems with accessdble

ourselves to the simplest case of uniformly distributed patcally stable retrieval states, in particular, in the presence of
terns. some amount of noise. As far as the performance of the
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' ' ' A ' ' point for finite @, below «a.. This starts to appear fot
r ,"' ] =0.63, with6=0.325 ande=0.0282, as shown in the inset
0.08| I , — of the figure for the retrieval transition. A critical point also
~ \_/ appears at the thermodynamic transition and in Fig. 1, we
show the results foc=0.5 andc=0.25. There may now be
a continuous transition with increasignduced by stochas-
tic noise between the nonoptimal and optimal performance
retrieval states above the critical point suggesting the pres-
ence of increasingly larger regions of continuous changes.
The interesting point is that this is a feature that already
starts to appear for finite andtermediateconnectivity, be-
tween that of the fully connected network and tbe-0
limit.
To understand the role of the threshold, one may use as a
guide the case of vanishing stochastic noise, with0.

FIG. 1. Phase diagrarfu, 6) for the Q=3 state network with When ¢ is small, the state of a unit will be essentialy
uniformly distributed patterns and connectivityas shown, af = =1, with an overlapm{*=(aN) 'Z;|&“|=1 in regionl|
=0. The full and the long-dashed lines represent the retrieval anfor uniformly distributed three-state pattergls, which take
the thermodynamic transition, respectively. The latter ends on thene values-1, 0, and+1. Sinceq= 1, the Hamming distance

right at the (dotted optimal performance line and the spin-glas_s in this region will bedy(1)=1/3. On the other hand, a&

phase appears at the left of the paramagnetic phase boundary inglj- & : : : .
cated by the short-dashed lines. The two retrieval regions | and | ecomes larger, the st 0 becomes increasingly impor

are discussed in the text and the inset corresponds=0.63, @nt and, despite the fact tha{= §iﬂl also yields an overlap
where the distinction between these phases starts to disappear. M =1, the SG order parameter is now reduced to the
activity 2/3. Thus, the resulting Hamming distandg(l1)
network is concerned, these are the most interesting statgg|| pe vanishingly small. Note that these results do not de-
and they usually appear for higher valuesaofs]. pend on the connectivity and they are, therefore, independent
We are interested here in the characteristic features of thgf the architecture of the network. This also follows from the
phase diagrams and the specific performance of the networke,, temperature saddle-point equations as can easily be
To see the effects of a gradual change in the connectivity, Wep o ked in the Appendix. In the case of a finite nonzero

S.hOW in Fig. 1 thele, 6) phase diagrams for =0. The full tochastic noise, instead, the performance of the network be-
lines represent the phase boundaries where the locally stab 8 mes explicitly dependent on the connectivity, but the over-

retrieval states appear at the critical storage ratig, o "
whereas the long-dashed lines indicate the thermodynam%II qualitative dependence ofl below the critical phase

transitions to the globally stable retrieval phase. The S oundar|§§ Is expected to foI_Iow that.m: 0. .
phase appears to the left of the short-dashed lines represent—The cr|t|ca}l .storage capacity now increases with decreas-
ing the boundary to the paramagnetic state. To distinguish if!9 connectivity and the presence of two comparable
what follows the transitions involving locally stable statesMaxima fora. is only a feature of intermediate Indeed, as
from the thermodynamic transitions, we refer to the formerth® synapses are further diluted, a single maximum is left,
simply as retrieval transitions. As long as the connectivityalPeit with a shift to higher values of. Finally, it is also
remains finite, all the transitions are discontinuous and, aworth noting that, in the—0 limit, the retrieval state is the
usual in connected networks, the SG state is globally stablglobally stable phase everywhere below the critieglline
only above the thermodynamic transitipa. and to the left of the globally stable paramagnetic phase,
Consider first the case of the fully connected network,despite the relatively large stochastic noise due to the pres-
with c=1, which has been redone and completed here for thence of spin-glass states in most of this region.
purpose of comparison. There are two retrieval regions, | and The zero-temperature results presented so far are not
Il for small «, separated by a sharp phase boundary, and thistable to replica-symmetry breaking perturbations but it is
is the case both below and above the thermodynamic transgxpected that most of the features described here will be
tion. The first is a region of nonoptimal performance characpresent at an already small but finite temperature above the
terized by a moderately large Hamming distance that deAT line, shown as dash dotted in Fig. 2, fé+=0.2. The full
creases with increasing whereas in region Il, the Hamming lines again represent the transitions to the locally stable re-
distance is small, dropping discontinuously at the phasérieval states and the thermodynamic transitions are not
boundary between the two regions with optimal network pershown. Note that, even for small connectivity, there is only a
formance along the dotted line. low synaptic-noise region in which the network is not stable
The situation should change with decreasing connectivity{o replica-symmetry breaking perturbations. For a larger
even at zero temperature. Due to the synaptic noise produced0.5, we expect a similar behavior for the transition to the
by the dilution, given by the variancA?/N=a(1—c)/N, locally stable retrieval state with decreasing connectivity as
one now expects an end to the discontinuous transition bahat found before for the fully connected network, but still
tween the retrieval regions | and Il atcadependent critical quite different from the behavior for lowet[15].
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B. The four-state network

In the case ofQ=4, the phase diagrams are more in-
volved. The patterns are assumed to take the vatiuesvith
probability /2 and £1/3 with probability (1-3)/2, in
which@a=(9a—1)/8, wherea=5/9 for uniformly distributed
patterns. We consider in the following the zero-temperature
behavior of the network and begin with the fully connected
case as a guide. We recover precisely the retrieval phase
boundaries found before 5].

Similar results with exclusively sharp phase boundaries,
between now enlarged ordered regions, are found for some-
what lower connectivity, as shown in Fig(a® for c=0.5.

/ For low «, we find three different ordered retrieval ferromag-
0.0 ] ! 6 netic phase§Ms, , FM;, andFM,, in a previous notation
T [15] and characterized below, separated by discontinuous
phase boundaries and in whigh=2/5 for uniformly distrib-

FIG. 2. Stable phase diagram to the right of the de Almeida-yted patterns. As increases, these phases disappear discon-
Thouless(dot-dasheglline in the («,T) plane for theQ=3 state tinuously at the critical phase boundaries into the SG
network with uniformly distributed patterng=0.2 and connectiv- phase. The three phases correspond to possible locally stable
ity ¢ as shown. The full lines represent the retrieval transition. states that become globally stable at the thermodynamic tran-
sition for lower «, not shown in the figure for simplicity.
Which of the locally stable states is actually reached in the

0.06
O, 0.04 f=7

00257

0.04 : , . T : T : T . r T . , . , . , .

FIG. 3. Phase diagrafw, 6) for the Q=4 state network with uniformly distributed patterns and connecti@thc= 0.5, (b) c=0.48,(c)
¢=0.1, and(d) c=0.01, atT=0. The full lines represent retrieval transitions and the optimal performance is indicated in dotted lines. The
central region is the best performance phB#é, and there is a lowr coexistence region between phaséd,;, andFM;.
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dynamic evolution of the network will depend, as usual, on ' ' ' ' ' R
their basins of attraction and the choice of the initial state.  ¢.10- 7
One may consider four regimes in the-0 limit. First,
when 6 is small, that is within the phadeM;, , mainly the 0.08
high activity states are favored wih=sgn¢) with an over-
emphasized overlam=6/5; the spin-glass order parameter
and the Hamming distance become=1 anddy=2/9, re- «
spectively. For larger and intermediafiethere should be a
phase, calledM, characterized by states of the network 0%
that follow essentially the patterns, wifh= ¢, and an over- ;
lap given bym=1, the spin-glass order parametgra 07
=5/9 and a vanishing Hamming distance. Between the smal -
and the intermediaté regimes, there could be a coexistence g ) . N
region of the phas&Mj, with the phaseFM,; where the 00 02 04 06
states of the network start to recognize the full structure of o
the patterns. Finally, there should be a phase characteristic of -c 4 ppase diagrarf, 6) for the Q= state network with

the larged regime in which mainly the intermediate states nitormiy distributed patterns and connectivityas shown, aff

with §=(1/3) sgn§;) are activated leading to a performance =g, The full lines represent retrieval transitions, the optimal per-
with m=2/5, q=1/9, and agairdy=2/9. This is the phase formance is indicated in dotted lines, and the onset of the binary
FM,, which should have an overlap with the ph&dd, at  network is shown by long-dashed lines. The phases are stable to the
intermediated. These expectations have been confirmed byight of the de Almeida-Thouless lingot-dashel

means of the solutions to the saddle-point equations in the . . .
a—0 limit and some of the results may be found in earlier® fro_m theFM3A_phase. As in the previous cases, there is a
work [15]. The four regimes are given b§<<1/4, 1/4< 6 coexistence region between the phafdd;, and FM,,

<3A/4, 3A/4< §<3/4, and 3/4 6. They do not depend on now only for smalle. Moreover, there is no need now for a

the connectivity and are therefore independent of the archépect'f'i tcf?mﬁ_e r?f th;eshold pa(;ame!&nnfc:;}der t? aclc(:efs .

tecture of the network, in accordance with earlier results gjnost orthe high-periormance domain ot the network. Incl-
dentally, note that the continuous retrieval phase boundary

Ej?l?,lrteogem%rﬁj[li% ial.wnected or the extreme symmetrlcallyfor the common phas&Mgz, and FM, is similar to that

’ found for the fully connected network with pattern activity
a=7/9 [15]. We have no further insight, at present, of this
feature.

Finally, in order to check the overall simplification of the

0.06

On the other hand, we confirm the symmetry of the lim-
iting « for #—o0 and for /=0, in accordance with earlier
results[15]. We also find that the optimal performance line
appears within thé=M, phase and that the network has a ; . . .
relatively high performance with a small Hamming distancephase diagrams that appears with decreasing connectivity, we

in that phase, with an overlap at the critical phase boundar Iso p;esené resn(Jths_fmrzo.Olt_l'?r}at are fsg_own Itr'] F'g'(d)t' .
that is 0.8 of that atv=0. e phase boundaries are still lines of discontinuous transi-

tions and the distinction between the four regimes is re-
stricted to even lower values of There is now a consider-
ably larger region of continuous changeover from the phase
IEM aa to the phase=M i, with access to optimal perfor-
mance, without the need of a fine adjustmentin

When the connectivity is reduced ¢e=0.48, the distinc-
tion between the phas€&aV;, andFM starts to disappear,
as shown by the enlarged gap in Figbhg allowing for a
continuous change into the high-performance phase for inte
mediate «. Note that there is still a discontinuous phase
boundary between the phadeM,;, andFM, and that the

presence of this phase boundary is important in order to in- C. The continuous response network

hibit the transition to the low performance phdskl , . In the case ofQ=<, we again consider uniformly distrib-
Furthermore, we still find four regimes for lowand that  uted patterns betweenl and 1, implying thati=1/3, and

the three main retrieval phasésMj,, FM{, andFM,, restrict the results to the zero-temperature case. The discon-

end discontinuously at the critical phase boundagy The tinuous transitions to the ordered phase are shown in full

optimal performance line is still purely within thEM; lines in thea— 6 phase diagram for decreasing connectivity

phase, as in the previous case, and the network has a high Fig. 4, where we omit again the thermodynamic transi-
performance up tar., with an overlap close to one on the tions and the long-dashed lines indicate now the onset of the
phase boundary, fof around 0.5. binary-network behavior. Note that the disappearance of the
As the connectivity is further decreasedcts 0.1, we find  ordered phase takes placeéat 1/2 for any finite connectiv-
the phase diagram shown in Fig(cBwith the three main ity, as in the case of the fully connected network and in
retrieval phases that disappear discontinuously.aand the  networks of different architecture, like the extremely asym-
four low-a regimes discussed above. The distinction betweemetric diluted and th€-Ising layered network15,13,14. In
the phase$M;, andFM disappears now at lower and  the case of the extremely diluted networks, the retrieval
the optimal network performance in the central phB&é¢, phase boundaries have a re-entrance éferl/2 [19]. This
may be reached continuously within a considerable range afeems to be a feature of the+0 limit, as one can see from

061902-8
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' ' ' ' ' logical networks. In the context of the networks studied here,
we focus mainly on the dependence of the retrieval proper-
] ties on the threshold or gain parametefor decreasing con-
nectivity ¢ and ask to which extent can a network go from a
- given locally stable retrieval state to a nearby high-
performance state without crossing phase boundaries of dis-
continuous transitions.

In order to answer that question, one has to look for ap-
propriate phase diagrams that were obtained here in replica-
symmetric mean-field theory. Since deviations from that
theory are very small and appear only in a small region near
: T=0, we may still draw relevant conclusions from those
diagrams. The explicit phase diagrams obtained in this paper
. I . apply to uniformly distributed patterns and to networks with
arbitrary symmetric dilution. The behavior of both the fully
C connected and the extremely diluted network are recovered
FIG. 5. Connectivity dependence for the maximum storage caWhen C::.L and Cfo’ respectlvgly, in that our gener.al
PACity aryq and the corresponding,.., in the Q= state network saddle-point equations bgcome identical to those for either
with uniformly distributed patterns at=0. case th?‘t have been obtained befdrs,19. o

We find that common features of the—0 limiting be-
ehavior in either fully connected or symmetrical extremely
diluted networks also appear for arbitrary finite connectivity
c. This confirms the expectations of earlier works that

both shown in Fig. 5. . . i

As in the case of both the fully connected and the Sym_pomted. out the archltecture-mdgpendent nature of some
metrical extremely diluted network, and in contrast with theProPerties[15,19. Among these is the particulaf=0.5,
Q=23 state network, we find that even at zero temperature‘fvhere the thermodynamic transition ends in Qe 3 state
most of the retrieval regions for differemt are stable to network and where the optimal perf'ormancg takes place for
replica-symmetry-breaking perturbations, that is fabove  1OW @ both forT=0. The common limitingT in the (a, T)
the AT lines. This includes the maximum storage capacityPa@se diagram for varyingis a further property of this kind,
and it follows from a positive replicon eigenvalue for this @ Well as the four distinct domains in tig=4 state net-
case obtained from Eq38), work and the#=0.5 limiting threshold for theQ =« net-

our further results for the connectivity dependence of th
maximum storage capacity,,,,x and the correspondin€,ax.

work at a=0.
arc < > arcy The main dependence of the behavior of the network on
Ap=1—— f Dz =1-—:", the connectivity arises for finite. For both odd and eveQ,
4q0?% \ JIme+ Jarcz]<26 (& 2q6 we find that a common feature that appears with an increase

(43 in the dilution of the synaptic connections is to suppress
selected sharp phase boundaries of discontinuous transitions

wherey is the susceptibility for the continuous network pre- that make the optimal performance domain readily accessible
sented in the Appendix. The AT line is given hy=0 and, to a wide region of low-threshold locally stable retrieval
again, in both thec=1 and thec—0 limit, in which rc states. Note that, on the other hand, the sharp boundary for
=q, this result coincides with that for the fully connected the Q=4 state network between the low-performance phases
and the symmetrical extremely diluted netwddb,19. FM3, andFM, survives synaptic dilution, at least to quite
an extent. These features of the network for small but finite
connectivity appear long before the extremely diluted limit
and they should be of considerable interest.

We derived in this paper, the replica symmetric mean-field Concentrating, for simplicity, on th@ =3 state network,
theory for Q-Ising attractor networks with low-activity pat- we also found that the boundaries between thermodynamic
terns and arbitrary symmetric dilution of the synaptic con-transitions are suppressed by an increase of the synaptic di-
nections. We extended earlier studies on the retrieval behawtion, and expect a similar behavior for tkle=4 state net-
ior and thermodynamic properties of either fully connectedwork.
or symmetrical extremely dilute@-Ising neural networks The results of our paper may be used to infer the behavior
with low-activity patterns, in order to study the effects of aof other networks. Since the fully connected network is
gradual dilution of the synaptic connections guided by thestrongly sensitive to pattern activity, one may consider other
motivation that neurons in biological networks of associativethan uniformly distributed patterngl5]. There are, essen-
memory are neither fully connected nor very sparsely linkedially, two kinds of phase diagrams in that case about which
to other neurons. We are mainly interested in the nature ofve can make definite predictions. One is the type of phase
the phase transitions to locally stable retrieval states and idiagram for patterns of relatively large activity that has
the role that synaptic dilution has in either reducing or de-mostly a decreasing phase boundary with increagiagd an
stroying sharp transitions motivated by the plasticity of bio-optimal performance line that appears only at sn#allhe

V. SUMMARY AND CONCLUDING REMARKS
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other type, which appears for medium or small pattern activwith S,(h,8) given by Eq.(39). These equations reduce to
ity, has an optimal performance only at intermediédtsuch  the equations for the extreme symmetrically diluted network,
as the cases shown in Fig. 3, and both types appeaRfor as well as for the fully connected network, in the>0 limit

=3 andQ=4, while only the first type seems to appear for andc=1, respectively. The same applies for the case® of
Q==. We expect that the main effect of a finite synaptic =4 andQ=co, presented below.

dilution on the first type of phase diagram is simply to shift |n the zero-temperature limitd—), the integrations

the retrieval phase boundaries upwards towards a larger  over the Gaussian variabfemay be done explicitly. In the
In the second type of phase diagrams, however, we expe —3 case. we obtain. fo#=0

also a disappearance of the discontinuous phase bounda
between thé=M 3, andFM, phases, in essentially the same

way we found in the present work, allowing for a smooth m= E erf( m+ 90 ) +erf m—0 ) (A4)
changeover from states of nonoptimal to those of optimal 2 2arc V2arc) |’
performance.
The main result of this paper, that partially connected a ( m+9 ( m—~0)
multistate Hebbian networks may attain near-optimal perfor- g=1— | erf —erf
mance without a fine tuning of neuron activity may be a 2 2arc V2arc
simplified statistical-mechanics explanation of why biologi- ~
cal memory networks seem to prefer low-activity patterns +(1—a)erf( 4 ) (A5)
between partially connected neurons. Of course, biological 2arc) |’
networks have asymmetric synaptic connections that may
lead through a dynamic evolution to different stationary 1 (M+79)2 (m—7)2
states, the search of which is certainly an interesting issuey = \/ {aexp< — +aexp( - )
that deserves a separate investigation, currently in progress. 2marc 2arc 2arc
The study of the effects of symmetric synaptic dilution 72
may be extended to other problems that deal with associative 2(1—a)exp< - ) , (AB)
memory, like the categorization problem as a classification 2arc

task in Q-Ising networks[24]. This has been done recently

for Q=2 [25] and there is work in progress for genefal ~ With the relation between g, and y given by Eq.(36).

[26]. For theQ=4 state model, with states and uniformly dis-
tributed patterns that take the valued, —1/3, +1/3, and
+1, a=5/9 and we obtain
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~ m ~
q= —f Dz S(m+\arcz,0)+S5| = + \/arcz,e)},
APPENDIX 2 3
(A8)
We present here, for completeness, the explicit expres-
sions for the saddle-point equations obtained for the sym-
metrically diluted network with arbitrary connectivityand X= f Dzz{sﬁ(er \/arczfg)
uniformly distributed patterns, fa@=3, Q=4, andQ=cc. 2\arc
For Q= 3, taking patternst1 with probabilitya/2 and 0 m
with probability (1—a) we have +Spl 3+ \/arcz,"é) , (A9)
mzf DzSy(m+ \arcz,d), (A1)  where
S.(h%) sinh(Bh) + % exp(836/9)sinh Bh/3)
q:f Dz[aSy(m+ arcz,0)+(1-a)S5(\arcz,9)], P70 coshBh) + exp(86/9)cosh gh/3)
(A10)
(A2)
In the zero-temperature limit
— L[ Drgasyme faree . :
X= Jarc z4aSy(m+ yarcz,6) S.(h,®)=signh)[1+26(|h|—49/3)],  (AlD)
+(1—a)Sg( \/arcz,79)], (A3) and the above equations yield, for posit@e
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3 f3m+4@ ) f3m—4”9 ved M )
m=—| ern| ——— erff —— erfl ——
10 3\2arc 3\2arc 3\2arc
L f m+49 ) f( m—49
—|er er
10 3y2arc 3\2arc
+erf| — (A12)
erfl ——| |,
3y2arc
1 2 f3m+479 f3m—4~6 +erf m+40
=1— —|effl ——| —erf| ———| +erfl ———
g 9 3\2arc 3\2arc 3\2arc
f m— 40 (A13)
—erfl ——| |,
3\2arc
1 (3m+49)? .\ (3m—49)?
X S omarc ex 18arc ex 18arc
m? (m+49)2
TR T o0 TP T T1garc
(Mm—46)? m? ALd
TR T gare ) TR T Tgarc) | (A14)

Finally, in the zero-temperature limit fa@@=o and uni-
formly distributed patterns betweenl and 1, implyinga

=1/3, we obtain ford=0,

PHYSICAL REVIEW E 64 061902

m—§f+ld§§ 1+m_§ erf[B(m)]Jr1 are
2J)a 2% 3 V2r
xexd —B4(m)]|, (A15)
2
q=1+3f+1df[(wa)erf[8<m>]
27/-1 (26)°
1 arc(mg )
+=\/— | —=—1|exd—B*m)]|, (A16)
0 T\ 2%
1 (+1
x=—~f déerfB(m)], (A17)
4971
where
B(mi) 26+mé L8
m f—
( J2arc '

and these integrations can be performed directly.
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